منابع مشابه
Characterizing Cell-Decomposable Metrics
To a finite metric space (X, d) one can associate the so called tight-span T (d) of d, that is, a canonical metric space (T (d), d∞) into which (X, d) isometrically embeds and which may be thought of as the abstract convex hull of (X, d). Amongst other applications, the tight-span of a finite metric space has been used to decompose and classify finite metrics, to solve instances of the server a...
متن کاملA Note on Circular Decomposable Metrics
A metric d on a finite set X is called a Kalmanson metric if there exists a circular ordering of points of X , such that d(y; u) + d(z; v) > d(y; z) + d(u; v) for all crossing pairs yu and zv of . We prove that any Kalmanson metric d is an l1-metric, i.e. d can be written as a nonnegative linear combination of split metrics. The splits in the decomposition of d can be selected to form a circula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Electronic Journal of Combinatorics
سال: 2008
ISSN: 1077-8926
DOI: 10.37236/882